未来智讯 > 3D打印论文 > 家用3D打印梦想依然遥远


发布时间:2019-01-12 01:06:03 文章来源:未来智讯    
    家用3D打印:梦想依然遥远?作者: 本刊编辑部   你想要个新的手机壳?还是可爱的摆件?甚至是一座房子?只管打印出来!这便是3D打印技能向人们承诺的美好未来。随着这一新兴技能的发展,越来越多的人起初幻想拥有自己的“梦工场”,想要什么,打印就成。于是,真的有人心痒难耐,借了台家用3D打印机起初试验,却不想整个过程状况百出、笑料不时,简直让人崩溃又无奈。他用亲身实践表明了:奇迹需要时间,梦想依然遥远。
  We keep hearing that 3D printing is the future. Very soon, it seems―like maybe in July or so?―we’ll all have Star Trek�type replicators installed in our homes. “Computer,” you’ll say, as you nibble a pastry, “please fabricate me a comfy new couch.” And lo, a sectional recliner2) with integrated cup holders will instantly appear. Or so goes the fantasy.
  How close are we to this scenario, really? Will there soon be a factory in every foyer? At-home 3D printing is thus far a fledgling3) market. Companies have been racing to create printers that combine reasonable cost, compact size, and user-friendly operation. But it’s not clear that anyone’s hit that sweet spot yet. To get a sense of the current state of at-home 3D printing, I borrowed one of the latest models. Not one of those industrial jobbies4) that get used by big companies, but rather a desktop printer designed for consumer use.
  When the Solidoodle 4―retailing for $1,000, and vaguely resembling an obese microwave―arrived at my office, I eagerly unpacked it in my cubicle5). I threaded the spool of filament6) into the printer’s nozzle7). I connected the printer to my laptop’s USB port. I assumed I’d soon be awash in an endless supply of newly conjured 3D stuff.
  But the moment I attempted to print my first object, I realized that this device isn’t really designed for the average, moderately tech-savvy consumer. It’s made for people who possess either A) infinite patience, B) a preternatural8) attention to detail, or, preferably, C) a post-graduate degree in mechanical engineering. For example, the program you download to your computer so you can control the printer is full of buttons labeled with phrases like “Go Dump Area” and “Flow Multiply” and “Kill Slicer” and―somehow both reassuring and worrisome at the same time―“Emergency Stop.”
  This last function made me acutely aware that a powerful machine was perched9) upon my desk. A machine capable of generating furious heat and spitting out molten plastic―which, given my lack of expertise, could easily splash about the room and end up melting co-workers’ eyes. At this point, I decided it might be prudent to call Solidoodle tech support.
  Within moments, an extremely helpful fellow named Joel was on the line, walking me through10) the setup process. He instructed me to heat the extruder (or as I’d been calling it, the nozzle) to 215 degrees. Then he had me click over to Thingiverse.com and download a simple design for a bottle opener. Confusingly, he asked if I happened to have a can of hairspray on hand. “Maybe like Aquanet?” he suggested. “The kind of stuff you might use to keep a mohawk11) in place?” I inquired of a nearby colleague, but she was not in possession of any hair care products. Luckily, this turned out to be noncrucial. Joel explained that the hairspray becomes necessary only if the object you’re printing is sliding around on the printer bed―some Aquanet, applied to the bed, helps stick things in place.   Winging it12) without any styling aerosols13), I sent the bottle-opener program from my laptop to the printer, clicked “Run,” and watched with glee as the Solidoodle sprung to life. The nozzle darted14) to and fro, extruding a thin stream of plastic with what appeared to be solemn purpose. I bid goodbye to Joel and hung up, confident I’d figured this thing out. And I watched as layer after layer of carefully laid filament slowly formed … an amorphous15), incoherent plastic blob16).
  OK, a less than total success. But I wasn’t deterred. And I refused to call Joel again. I began to play around, moving the extruder on its x- and y-axis with a click of my mouse. I turned the heat back on and coaxed17) it up to 215 degrees. Then I noticed that my filament was snapped, and I had to rethread it. But a small piece was stuck inside the nozzle. I called Joel again.
  “Do you have a sequential set of Allen wrenches18)?” he asked. “Preferably in metric19)? I’m pretty sure it’s a 1.5mm screw, but you might want to have an assortment20).” I turned to my colleague again, but she was no more help with Allen wrenches than she’d been with the hairspray. “OK,” said Joel, “you can try to melt it out. Heat it to a really high temperature but try not to damage the machine or hurt yourself.”
  Using a pair of extra-long tweezers21) that came with the printer, I was able to half-melt, half-yank the filament out, rethread it, and try again. Once more, the printer cheerily jumped into action. This time I’d set the bed too low, so the plastic drooped from the nozzle with no platform to land on. Instead of a bottle opener, I ended up with a scraggly22) bird’s nest.
  Now absolutely determined to print some sort of recognizable object, I raised up the bed, heated the nozzle, and downloaded a program that builds a tiny robot figurine. This time, everything seemed to work correctly. A pair of little robot legs took shape. And then the printer just halted, for no discernible23) reason, leaving a sad, half-formed robot body, almost poignant in its abandonment―with a singed spot where the hot nozzle stayed in one place for too long. I call it Robot.
  I spent some time attempting to suss out24) where I went wrong. But after a while, I gave up. I mean, let’s say I got the printer working again. Best case scenario, I’ve melted no one’s eyes and I’ve got a new robot figurine. Woohoo. I don’t need or want a robot figurine. And $1,000 for the printer plus $43 for each spool of filament is a hefty price to pay for a functionless, semidecorative piece of plastic I could buy for like 23 cents.   What’s more, the printer was loud enough that office colleagues were beginning to complain about the racket25). It was emitting a smell not unlike that of burning hair. And it was taking forever to print out these objects that weren’t quite objects.
  All of which points to some fundamental problems with the current state of desktop 3D printing. Right now, even if you can tolerate the printer’s noise and stink and interminable26) wait time, there’s basically nothing you can make that you actually want or that is cost effective. It’s all trinkets27) and gewgaws28). The most popular patterns at Thingiverse are pen holders and elephant figurines and flimsy, unattractive iPhone cases.
  Until there’s a killer app29) for the desktop 3D printer, though, I can’t see any reason for the average person to buy one. And I can’t yet imagine what this killer app would be. What could you manufacture at home in a manner that’s cheaper and more efficient than could be done in a giant factory? I’m open to ideas. If “customizable, personal designs” is part of your answer, remember that those designs will be limited to plastic, and that any use of wood or metal or suede30) will require additional procurement31) and assemblage, which means speed and convenience are out the window32). There were very sound reasons behind society’s transition to centralized manufacturing.
  Consider: Once upon a time, people purchased sewing patterns (like a program from Thingiverse) and yards of fabric (like filament) and they made their own clothes. I wasn’t alive back then, but I’m pretty sure the process sucked. It took lots of time and effort and the clothes were often amateurishly constructed. Sure, consumer sewing machines got better, and made things faster and easier and more professional looking. But nowadays, save for DIY fashion enthusiasts and grandmas with lots of time on their hands, people aren’t buying many at-home sewing machines. They’re a novelty item with little practical purpose. Most people would much rather just get their clothes from a store―already assembled by people employing industrial-level efficiency and a wide variety of materials.
  I could be wrong. Perhaps today’s 3D printers are akin to the cellphones of 1987. Over time, we’ll graduate from the Motorola DynaTac 8000X33) to the iPhone 5s―smaller, faster, more capable, and, eventually, indispensable. But I’ll bet you a pile of extruded plastic goo that I’m right.
  我们不时地听到有人说,3D打印是我们的未来。不用多久――貌似7月份左右?我们所有人家里都将装上电影《星际迷航》中的那种复制器。“电脑,”你一边啃着点心一边说,“请给我做一张舒适的新沙发。”然后,瞧,一张带有一体式杯架的组合躺椅马上显现。人们便是这么幻想的。   我们到底离这种场景还有多远?是不是很快每家的门厅里都会有一个工场?目前,家用3D打印是一个新兴市场。很多公司一直在竞相打造集价格合理、外形小巧和操作简便于一体的打印机。但目前尚不清楚是否有哪家公司的产品实现了这三者的完美联合。为了明白家用3D打印技能的现状,我借了一台最新型的打印机。不是大公司使用的那种工业用打印机,而是专为消费者使用所设计的桌面打印机。
  试想一下:以前人们购买缝纫图样(就像从Thingiverse上下载程序)和几码布(非常于细丝),然后自己缝制衣服。我没有生活在那个年代,但我确信那个过程肯定很麻烦,要花费大量的时间和精力,做出的衣服通常也不专业。当然,有家用缝纫机后情况会好些,做衣服更快、更大略,看起来也更专业。但如今,除了DIY时尚爱好者和有大把自由时间的祖母们,人们不再购买任何家用缝纫机。它们是几近没有实际用途的新鲜事物。大局部人宁愿仅从商店买衣服――由人们以工业级效率用各种各样的材料制成。   我也有可能是错的。或许,今天的3D打印机就像1987年的手机。随着时间的推移,我们从摩托罗拉DynaTac 8000X逐步升级到iPhone 5s――更小、更快、更强大,最后变得不可或缺。但我跟你们打赌我是对的,赌注是一堆挤出来的黏塑料。
  1. foyer [?f??e?] n. 门厅;休息室
  2. recliner [r??kla?n?(r)] n. 可调式扶手躺椅
  3. fledgling [?fled?l??] adj. (组织或系统)新建的,没有经验的
  4. jobbie [?d??b?] n. 某一物体(或产品)
  5. cubicle [?kju?b?k(?)l] n. 小房间;隔间
  6. filament [?f?l?m?nt] n. 细丝;丝状物
  7. nozzle [?n?z(?)l] n. 喷嘴
  8. preternatural [?pri?t?(r)?n?t?(?)r?l] adj. 超自然的;异常的
  9. perch [p??(r)t?] vt. 把……置于
  10. walk (sb.) through:带(某人)理清一个复杂的问题或过程
  11. mohawk [?m???h??k] n. 莫西干式发型
  12. wing it:即兴发挥
  13. aerosol [?e?r??s?l] n. 小型喷雾器
  14. dart [d�?(r)t] vi. 急速移动
  15. amorphous [??m??(r)f?s] adj. 无固定形状(或结构)的
  16. blob [bl?b] n. (黏稠液体的)一滴,一团
  17. coax [k??ks] vt. 当心地摆弄(机器或装置)
  18. Allen wrench:内六角扳手,也叫艾伦扳手。
  19. metric [?metr?k] adj. 米制的;公制的
  20. assortment [??s??(r)tm?nt] n. 各式各样
  21. tweezers [?twi?z?(r)z] n. 镊子,小钳子
  22. scraggly [?skr?�(?)li] adj. 蓬乱的
  23. discernible [d??s??(r)n?b(?)l] adj. 看得清的;鉴别得出的
  24. suss out:发现或调查出……的来龙去脉
  25. racket [?r?k?t] n. 喧嚷;吵闹声
  26. interminable [?n?t??(r)m?n?b(?)l] adj. 冗长不堪的
  27. trinket [?tr??k?t] n. 廉价首饰;小装潢物
  28. gewgaw [?�ju?�??] n. 好看但不值钱的装潢品(或玩具)
  29. killer app:(优于其他产品或独具特色的)杀手级应用
  30. suede [swe?d] n. 绒面革;仿麂皮
  31. procurement [pr??kj??(r)m?nt] n. 采购
  32. be out the window:(方法等)被丢弃
  33. Motorola DynaTac 8000X:摩托罗拉DynaTac 8000X,世界上的首款手机,重两磅,通话时间为半小时。